

- 1 Technical note: Measurement of chemically-resolved volume
- 2 equivalent diameter and effective density of particles by AAC-
- 3 **SPAMS**

15

- 4 Long Peng^{1,2}, Lei Li⁴, Guohua Zhang^{1, 3*}, Xubing Du⁴, Xinming Wang^{1, 3}, Ping'an
- 5 Peng^{1, 3}, Guoying Sheng¹, Xinhui Bi^{1, 3*}
- 8 Laboratory of Environmental Protection and Resources Utilization, Guangzhou
- 9 Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- 10 ² University of Chinese Academy of Sciences, Beijing, 100049, China
- 11 ³ Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
- 12 Control, Guangzhou 510640, China
- 13 ⁴ Institute of Mass Spectrometer and Atmospheric Environment, Jinan University,
- 14 Guangzhou 510632, China

*Correspondence to: bixh@gig.ac.cn and zhanggh@gig.ac.cn

https://doi.org/10.5194/acp-2020-1044 Preprint. Discussion started: 26 October 2020 © Author(s) 2020. CC BY 4.0 License.

Abstract

17

18 Size and effective density (ρ_e) are important properties of aerosol particles and are 19 related to their influences on human health and the global climate. The volume 20 equivalent diameter (D_{ve}) is an intrinsic property that is used to evaluate particle size. 21 ρ_e , defined as the ratio of particle density to a dynamic shape factor (χ) , is used to 22 characterize the physical property of a particle as an alternative to particle density. 23 However, it is still challenging to simultaneously characterize the D_{ve} and ρ_e of particles. 24 Here, we present a novel system that classifying particles with their aerodynamic 25 diameter (D_a) by aerodynamic aerosol classifiers (AAC) and determining their vacuum 26 aerodynamic diameter (D_{va}) by single particle aerosol mass spectrometry (SPAMS) to 27 achieve a measurement of D_{ve} and ρ_e . The reliability of the AAC-SPAMS system for 28 accurately obtaining $D_{\nu e}$ and ρ_e is verified based on the results that the deviation between 29 the measured values and the theoretical values is less than 4% for the size-resolved spherical polystyrene latex (PSL). The AAC-SPAMS system is applied to characterize 30 31 the D_{ve} and ρ_e of (NH₄)₂SO₄ and NaNO₃ particles, suggesting that these particles are 32 aspherical and their ρ_e are independent of particle size. Finally, the AAC-SPAMS system is deployed in a field measurement, showing that it is a powerful technique to 33 34 characterize the chemically-resolved D_{ve} and ρ_e of particles in real time.

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

1. Introduction

quantifying the impact of aerosols on air quality, human health and global climate change (Buseck and Posfai, 1999; Poschl, 2005; Pitz et al., 2003). Effective density (ρ_e) has been adopted to characterize the physical property of a particle as an alternative to ρ_p , since ρ_p for aspherical aerosol particles is hardly measured (Sumlin et al., 2018; Katrib et al., 2005). Size and ρ_e govern the transport properties of a particle both in the atmosphere and in the human respiratory system (Seinfeld and Pandis, 1998; Liu and Daum, 2008) and directly/indirectly influence the potential of the particle to absorb or reflect solar radiation (Tang, 1997; Zhao et al., 2019; Liu and Daum, 2008). ρ_e can also provide information concerning particle morphology (Yon et al., 2015) and serve as a tracer for atmospheric processing (Guo et al., 2014; Yin et al., 2015; Liu et al., 2015). However, the quantitative relationship between aerosol properties, namely, size and ρ_e , and their effects on air quality, human health and global climate change is not yet well understood, which is partly because important aerosol properties cannot be measured by current techniques. Size. Size is a fundamental property of particles, which can be parameterized by the physical quantity of volume equivalent diameter (D_{ve}) . Defined as the diameter of a spherical particle with the same volume as the particle (DeCarlo et al., 2004), D_{ve} is an intrinsic physical quantity that can be used to evaluate the actual size of the particle. However, to date, atmospheric science usually describes particle size by other diameter definitions, such as the electric mobility diameter (D_m) , aerodynamic equivalent

Size and particle density (ρ_p) are critical parameters of aerosol particles in

- 57 diameter (D_a) and vacuum aerodynamic equivalent diameter (D_{va}) , whose relationships
- with D_{ve} are shown in Eqs. (1)-(3), respectively: 58

$$\frac{D_m}{C_c(D_m)} = \frac{D_{ve}}{C_c(D_{ve})} \chi_t, \tag{1}$$

59
$$\frac{D_m}{c_c(D_m)} = \frac{D_{ve}}{c_c(D_{ve})} \chi_t, \tag{1}$$
60
$$D_a = D_{ve} \sqrt{\frac{\rho_p C_c(D_{ve})}{\chi_t \cdot \rho_0 \cdot C_c(D_a)}}, \tag{2}$$

$$D_{va} = \frac{\rho_p}{\rho_0} \frac{D_{ve}}{\chi_v},\tag{3}$$

- 62 where $C_c(D)$ is the Cunningham slip correction factor, χ_t and χ_v represent the aerosol
- 63 dynamic shape factor (χ) in the transition regime and in the free-molecule regime,
- respectively, and ρ_0 represents the unit density of 1.0 g/cm³. From the definitions, it can 64
- 65 be seen that D_m , D_a , and D_{va} are originally derived from D_{ve} , but in actuality, they do
- 66 not reflect the actual size of the particle. Meanwhile, D_{ve} cannot be easily obtained,
- 67 which limits its application in the scientific community.
- 68 **Effective density.** At present, three definitions of ρ_e are introduced in atmospheric
- science (DeCarlo et al., 2004): the first definition (ρ_e^I) is the ratio of the measured 69
- 70 particle mass (m_p) to the particle volume (V) calculated assuming a spherical particle
- with a diameter equal to the measured D_m ; the second definition (ρ_e^{II}) is the ratio of D_m 71
- and D_{va} ; and the third definition (ρ_e^{III}) is the ratio of ρ to χ , all of which are expressed 72
- 73 in Eqs. (4)-(6), respectively.

$$\rho_e^I = \frac{6m_p}{\pi D_m^3} \tag{4}$$

$$\rho_e^{II} = \frac{D_{va}}{D_m} \, \rho_0 \tag{5}$$

$$\rho_e^{III} = \frac{\rho_P}{\chi} \tag{6}$$

- When the above equations are combined with Eqs. (1) and (3), the final forms of 77
- ρ_e^I and ρ_e^{II} can be expressed as Eqs. (7) and (8), respectively: 78

$$\rho_e^{\rm I} = \frac{\rho}{\chi^3} \cdot \left(\frac{C_c(D_{ve})}{C_c(D_m)}\right)^3 \tag{7}$$

$$\rho_e^{\mathrm{II}} = \frac{\rho}{\rho_0} \cdot \frac{C_c(D_{ve})}{\chi^2 \cdot C_c(D_m)} \tag{8}$$

81 The detailed derivation will be presented in a separate paper, in which we demonstrate that ρ_e^I and ρ_e^{II} have the inherent characteristics of decreasing with increasing particle 82 83 size. Therefore, it will introduce systemic error when assessing the particle impacts on visibility, human health and climate from the physical quantities in ρ_e^I and ρ_e^{II} . In 84 contrast, ρ_e^{III} is independent of particle size. Previously, ρ_e^{III} for the spherical particles 85 was derived from Mie modelling of the scattering signals collected by single particle 86 87 mass spectrometry (Moffet and Prather, 2005). However, there is no effective technique to achieve the measurement of ρ_e^{III} for aspherical particles. Thus, for 88 reference, the symbol ρ_e in the following text refers to the definition of ρ_e^{III} . 89 90 The aim of the present work is to develop a method to obtain D_{ve} and ρ_e . The established system of an aerodynamic aerosol classifier (AAC)-single particle aerosol 91 mass spectrometry (SPAMS) is capable of characterizing the D_a and D_{va} of particles, 92

of polystyrene latex (PSL). The results are in good agreement with the theoretical values. Finally, the AAC-SPAMS system is applied to measure the D_{ve} and ρ_e for (NH₄)₂SO₄

and NaNO₃ particles and for the chemically-resolved atmospheric particles.

which can be applied to theoretically derive D_{ve} and ρ_e . To verify the reliability of the

AAC-SPAMS system, we apply it to measure the D_{ve} and ρ_e of the spherical particles

98

100

93

94

95

96

97

99 2. Experimental section

2.1 Measurement system

Figure 1 shows a schematic diagram of the AAC-SPAMS system. The particles are first dried by a diffusion drying tube (TSI 9302, USA), classified by AAC (Cambustion Ltd., UK) based on the aerodynamic diameters D_a , and then transported into SPAMS in which the D_{va} and the mass spectra of individual particles are obtained. The working principle of the AAC is described in detail elsewhere (Tavakoli and Olfert, 2013). AAC consists of two coaxial cylinders that rotate at the same rotational speed. Polydisperse particles enter into the space between the cylinders (i.e., classification column) and experience a centrifugal force that causes them to move toward the outer cylinder. The particles to be classified can leave the classification column with the particle-free sheath flow and finally exit the AAC with the sample flow. Thus, the D_a values of classified particles can be derived from their relationship with their relaxation time (τ), as shown in Eq. (9):

$$\tau = \frac{c_C(D_a) \cdot p_0 \cdot D_a^2}{18\mu} \tag{9}$$

where μ is the gas dynamic viscosity. Particles with large relaxation times impact and adhere to the outer cylinder, while particles with small relaxation times exit the classifier with the exhaust flow.

Detailed information about the operation of SPAMS (Hexin Analytical Instrument Co., Ltd., China) is described elsewhere (Li et al., 2011). Briefly, the particles are introduced into the vacuum system through a 0.1 mm critical orifice and are gradually collimated into a beam in the aerodynamic lens. Two continuous diode Nd:YAG laser beams (532 nm) are used to aerodynamically size the particles, which are subsequently desorbed/ionized by a pulsed laser (266 nm) that is triggered based on the velocity of a

specific particle. The generated positive and negative ions are recorded with the corresponding particle size. The D_{va} of the particle is related to the transit time between the two laser beams (532 nm) in SPAMS, which can be obtained by using a calibration curve generated from the measured transit times of a PSL series with predefined sizes (nominal diameters).

128

129

131

132

137

141

127

123

124

125

126

2.2 Experiments and sampling schedule

130 Dried spherical PSL (Nanosphere Size Standards, Duke Scientific Corp., Palo Alto) $(\rho_p = 1.055 \text{ g/cm}^3 \text{ and } \chi = 1.0) \text{ with } D_{ve} \text{ values of 203.0 nm, 310.0 nm, 510.0 nm, and}$ 740.0 nm were used in the AAC-SPAMS system. The PSL particles were first classified by AAC, and then their D_{va} values were obtained by SPAMS. ACC-SPAMS was also 133 134 applied to the particles of (NH₄)₂SO₄ ($\rho_p = 1.77 \text{ g/cm}^3$) and NaNO₃ ($\rho_p = 2.26 \text{ g/cm}^3$) with D_a values of 250.0 nm, 350.0 nm, 450.0 nm and 550.0 nm. 135 136 For field observations, the AAC-SPAMS system was placed in an urban area building to characterize the D_{ve} , ρ_e and chemical compositions of aerosol particles. The sampling 138 inlet was hung 2.5 meters from the third floor (~12 m above ground level). Ambient aerosol particles were introduced into the AAC through a 5 m long conductive silicone 139 140 tube with an inner diameter of 6 mm and a PM_{2.5} cyclone inlet. The overall sampling flow was 3 L/min, and the residence time was approximately 5 seconds. Sampled particles were classified by the AAC as one of four D_a : 250.0 nm, 350.0 nm, 450.0 nm 142 and 550.0 nm. The sampling time for the particles of each D_a was approximately 10 143 minutes. From July 6th to 8th, 2019, approximately 100,000 ionized particles were 144

obtained. The sampling details are shown in Table S1.

146

147

2.3 Theoretical derivation of D_{ve} and ρ_e from D_a and D_{va}

148 D_{ve} is the accurate physical quantity of the size of a particle. ρ_e is an alternative 149 property for ρ_p , which is consistent with the property of ρ_p in terms of being independent 150 of particle size. These two properties cannot yet be measured for unknown particles by 151 current techniques. In this study, the calculations of D_{ve} and ρ_e for unknown particles 152 are theoretically derived from D_a and D_{va} . Combining Eqs. (2) and (3), we obtain the 153 following Eq. (10):

$$C_{(D_a)} \frac{D_a^2}{D_{va}} = D_{ve} C_{(D_{ve})} \frac{\chi_v}{\chi_t}$$
 (10)

- Based on the approximation between χ_v and χ_t ($\chi_v \approx \chi_t = \chi_a$) (DeCarlo et al., 2004), Eq.
- 156 (10) becomes Eq. (11):

157
$$C_{(D_a)} \frac{D_a^2}{D_{va}} = D_{ve} C_{(D_{ve})}$$
 (11)

- 158 If the D_a and D_{va} of an unknown particle can be measured, its D_{ve} will be calculated
- according to Eq. (11). Finally, the ρ_e value of the particles is calculated by the D_{va} and
- 160 D_{ve} values according to Eq. (12):

$$\rho_e = \frac{\rho_p}{\chi_a} = \frac{D_{va}}{\rho_0 \cdot D_{ve}} \tag{12}$$

- Thus, we can obtain both the D_{ve} and ρ_e values of unknown particles based on the D_a
- and D_{va} values. Because the AAC and SPAMS instruments have the ability to determine
- 164 D_a and D_{va} , the AAC-SPAMS system, which is developed in this study, can be used to
- obtain the D_{ve} and ρ_e values for unknown particles.

166

168

169

3. Results and discussion

3.1 Verification of the AAC-SPAMS system to obtain D_{ve} and ρ_e

The D_{va} distribution of PSL particles with predefined D_{ve} values after screening by

170 the AAC is shown in Figure S1. We used Gaussian fitting to obtain the peak D_{va} for 171 each size PSL with an R-squared fitting coefficient (R^2) over 0.98. Each fitting has a full width at half maximum (FWHM) of 6.6%, 4.4%, 2.3% and 2.2%, and the 172 173 corresponding peaks are 215.8 nm, 319.0 nm, 532.1 nm and 803.5 nm, respectively. 174 Substituting the D_a and D_{va} values of PSL into Eq. (11), the measured D_{ve} ($D_{ve,me}$) of 175 PSL from AAC-SPAMS system is 203.6 nm, 309.7 nm, 511.6 nm and 737.2 nm, 176 respectively (Figure 2a). Thus, the deviations between the theoretical D_{ve} ($D_{ve,th}$) and $D_{ve,me}$ values are 0.3%, -0.1%, 0.3% and -0.4%, respectively. On the other hand, the 177 178 measured $\rho_e(\rho_{e,me})$ values of the particles are calculated from the D_{va} and $D_{ve,me}$ values with Eq. (12), and the $\rho_{e,me}$ values are 1.06 g/cm³, 1.03 g/cm³, 1.04 g/cm³, and 1.09 179 180 g/cm³ (Figure 2b). Furthermore, based on a ρ_p of 1.055 g/cm³ and a χ of 1.0 for PSL 181 particles, the deviations of $\rho_{e,me}$ are 0.5%, -2.4%, -1.4%, and 3.3%, respectively. That 182 is, the deviations of $D_{ve,me}$ and $\rho_{e,me}$ characterized by the AAC-SPAMS system are within 1% and 4%, respectively. We therefore conclude that the AAC-SPAMS system is highly 183 184 accurate for obtaining aerosol D_{ve} and ρ_e .

185

188

186 3.2 Application of the AAC-SPAMS system for obtaining D_{ve} and ρ_e of (NH₄)₂SO₄

187 and NaNO₃

Figure S2 shows the D_{va} distributions of (NH₄)₂SO₄ and NaNO₃ particles, which have

189 D_a values of 250.0, 350.0, 450.0, and 550.0 nm, as screened by the AAC. The D_{va} peaks are obtained by Gaussian fitting, with R^2 values over 0.93 and FWHM values ranging 190 191 from 7.6% to 10.6%. The (NH₄)₂SO₄ particles have D_{va} values of 300.0, 418.0, 551.1, 192 and 695.1 nm (Figure S2), which correspond to particles possessing $D_{ve,me}$ values of 193 177.3, 254.4, 331.8, and 409.3 nm, respectively, according to Eq. (11). Substituting the 194 values of D_{va} and $D_{ve,me}$ into Eq. (12), the $\rho_{e,me}$ values are 1.74, 1.60, 1.65, and 1.74 195 g/cm³ (Figure 3a), respectively. Similarly, the selected NaNO₃ particles are determined 196 to have D_{va} values of 321.0, 454.9, 599.8, and 755.3 nm (Figure S2), corresponding to 197 $D_{ve,me}$ values of 150.1, 218.2, 287.0, and 355.9 nm, respectively. The $\rho_{e,me}$ values of the NaNO₃ particles are 2.21, 2.03, 2.05, and 2.14 g/cm³ for the four particle sizes (Figure 198 199 3b), respectively. Figure 3 also shows that the $\rho_{e,me}$ values of the NaNO₃ and (NH₄)₂SO₄ 200 particles at four size slightly deviate from their average values, which are identical with 201 the deviation phenomenon for the $\rho_{e,me}$ of PSL particles. These deviations are derived 202 from the measurement of the particle D_{va} in the SPAMS which size calibration curve 203 possesses the systematic error. 204 Taking the systematic error into account, the slight difference of the $\rho_{e,me}$ values for 205 the four sizes suggests that the ρ_e of (NH₄)₂SO₄ and NaNO₃ particles is independent of 206 particle size from 250 nm to 550 nm. This pattern is divergent with the previous studies, 207 which showed that effective density decreased as the size increasing (Zelenyuk et al., 208 2006; Zhang et al., 2016a). It is caused by the difference of the definitions of the 209 effective density. The definitions of effective density used in previous studies possessed the inherent characteristics of decreasing with the increasing particle size, which will 210

211 be discussed in a separate paper. The definition of effective density used in this study 212 will keep constant as long as the γ_a of the particles does not change with particle size. 213 The average $\rho_{e,me}$ values of (NH₄)₂SO₄ and NaNO₃ particles are calculated to be 1.68 \pm 0.07 and 2.11 \pm 0.08 g/cm³, respectively. The average $\rho_{e,me}$ values are lower than that 214 215 the ρ_p of (NH₄)₂SO₄ (1.77 g/cm³) and NaNO₃ (2.27 g/cm³), which is caused that the 216 $\rho_{e,me}$ is determined by both of ρ_p and χ_a . According to Eq. (12), the χ_a of (NH₄)₂SO₄ and 217 NaNO₃ particles with different D_a are calculated to be 1.02, 1.10, 1.07, and 1.02 and to 218 be 1.03, 1.12, 1.11, and 1.06, respectively. Thus, the average χ_a values of the (NH₄)₂SO₄ 219 and NaNO₃ particles are determined to be 1.05 ± 0.04 and 1.08 ± 0.04 , respectively, 220 which can be used to parameterize their morphology. 221 The average χ_a values of the (NH₄)₂SO₄ and NaNO₃ particles indicate that these 222 particles are aspherical. The asphericity of (NH₄)₂SO₄ determined by AAC-SPAMS 223 system is consistent with the previous studies reporting that the χ_a of (NH₄)₂SO₄ were 224 larger than the value of 1.03 (Zelenyuk et al., 2006; Beranek et al., 2012; Zhang et al., 225 2016a). However, previous studies found that the NaNO₃ particles had different 226 morphology. Zhang et al. (2016a) observed that NaNO₃ had the χ_a of 1.09-1.13, indicating its asphericity, while Hoffman et al. (2004) found that NaNO3 particle had a 227 228 round droplet-like shape even at 15% RH, which was supported by the consistence 229 between the measured value of "anhydrous" droplet density and the calculated value of 230 "anhydrous" solution droplet (Zelenyuk et al., 2005). Eclectically, Tang and 231 Munkelwitz (1994) studied that most of the NaNO₃ particles crystallized between 20% and 30% RH but some persisted down to 10% RH to form solution droplets. Notably, 232

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

the spherical NaNO₃ particles at low RH observed by Hoffman et al. (2004) were dried in the sticky carbon tape which might affect the phase transition of droplet-like NaNO₃ particles. In this study, most NaNO₃ particles were crystallized because the RH of the aerosol flow carrying the NaNO3 particles was reduced to below 20% through the diffusion drying tube. Besides, the result that the crystallized NaNO3 particles are aspherical is supported by their FWHM values of the D_{va} distributions which are consistent with that of aspherical (NH₄)₂SO₄ but different from spherical PSL (Figures S1 and S2). 3.3 Application of the AAC-SPAMS system for measuring the chemically-resolved D_{ve} and ρ_e SPAMS can obtain information on the chemical composition of individual particles, implying that the AAC-SPAMS system has the ability to simultaneously characterize D_{ve} , ρ_e and the chemical compositions of particles in real time. It is worth noting that the particles with the largest γ in the actual atmosphere should be freshly emitted soot, which χ is 2.5 (Peng et al., 2016). This largest χ fitly meets the upper limit for the approximation between the χ_t and χ_v (DeCarlo et al., 2004). Therefore, the AAC-SPAMS system can obtain the chemically-resolved D_{ve} and ρ_e values for unknown aerosol particles in the field observation. As an example, we applied the AAC-SPAMS system to illustrate how the measured D_a , D_{va} , and chemical composition of an individual particle can be used to calculate the D_{ve} and ρ_e for unknown particles. The sampled ~100,000 particles are first classified by

255 using an adaptive resonance theory neural network (ART-2a) with a vigilance factor of 0.75, a learning rate of 0.05 and 20 iterations. The above system was used to cluster the 256 257 particles into eight major particle types with distinct chemical patterns of K-rich, EC-S, K-Na, Amine, EC-N-S, OC-N-S and OC-EC-N-S and Metal-rich, representing 97% 258 259 of the detected particle population. Details of the chemical composition and number fraction of the eight types of particles are provided in the Supporting Information. 260 261 We used Gaussian fitting to obtain the D_{va} peaks for each particle type with D_a values 262 of 250.0 nm, 350.0 nm, 450.0 nm, and 550.0 nm. Then, we calculated the D_{ve} values of 263 the atmospheric particles with Eq. (11). Table 1 presents the average $D_{\nu e}$ values of the 264 eight particle types, for which the standard deviation is calculated based on nine samples. The average D_{ve} at D_a values of 250.0 nm, 350.0 nm, 450.0 nm, and 550.0 nm 265 266 has the following wide ranges: from 188.5 nm to 200.8 nm, 271.9 nm to 295.7 nm, 267 342.5 nm to 428.9 nm, and 397.3 nm to 570.9 nm, respectively, which are caused by 268 the chemical composition differences. The result indicates that particles with 269 significantly different D_{ve} might possess the same D_a . Furthermore, the large standard 270 deviation of D_{ve}, such as 21.9 nm for K-Na at 250.0 nm, 32.3 nm for OC-EC-N-S at 350.0 nm, and 44.3 nm for OC-N-S at 450.0 nm, indicates that the D_{ve} of particles is 271 272 remarkably different even for particles with the same type and same D_a . 273 According to D_{ve} and D_{va} , we calculated the ρ_e of each particle type with Eq. (12). 274 Figure 4 shows the variations of the ρ_e with D_{ve} for nine particle samples. For pure 275 compounds, such as $(NH_4)_2SO_4$ and $NaNO_3$ particle, ρ_e theoretically does not change 276 with particle size. However, the sampled particles have experienced complex

atmospheric processes. Therefore, ρ_e has a very wide distribution for each type of particle with a similar D_{ve} . Specifically, the ρ_e of K-Na increases with D_{ve} , while the ρ_e of OC-N-S and OC-EC-N-S decreases with D_{ve} , which may be influenced by the particle shape. Additionally, the average ρ_e of each type of particle is in the order from small to large: 1.21 ± 0.20 g/cm³ for OC-EC-N-S, 1.25 ± 0.15 g/cm³ for OC-N-S, 1.45 ± 0.06 g/cm³ for K-rich, 1.45 ± 0.04 g/cm³ for Amine, 1.46 ± 0.05 g/cm³ for EC-N-S, 1.47 ± 0.02 g/cm³ for EC-S, 1.55 ± 0.09 g/cm³ for K-Na and 1.56 ± 0.08 g/cm³ for Metal-rich. It is reasonable to find that the average ρ_e of internally mixed particles distributes in the range of their material densities (ρ_m). For instance, mainly comprised of internally mixed sulfate and organics, the OC-EC-N-S, OC-N-S, K-rich, and Amine particles have the average ρ_e between that of sulfate with ρ_m of 1.77 g/cm³ and organic aerosols with ρ_m of 1.2 g/cm³ (Cross et al., 2007).

4. Conclusion

We first develop an AAC-SPAMS system to achieve the measurement of the D_{ve} and ρ_e of the particles through characterizing their D_a and D_{va} . The reliability of the AAC-SPAMS system is verified by accurately measuring the D_{ve} and ρ_e of PSL. Applying the AAC-SPAMS system to determine the D_{ve} and ρ_e of (NH₄)₂SO₄ and NaNO₃ particles shows that these particles are aspherical and their ρ_e are independent of particle size. Coupled with the ability of SPAMS to characterize the chemical composition of individual particles, we conducted a sample proof of the AAC-SPAMS equipment in Guangzhou to first characterize the D_{ve} , ρ_e and chemical compositions of atmospheric

299 particles, showing the potential application of this system in field observations. The 300 approach achieves the measurement of chemically-resolved D_{ve} and ρ_e , and provides 301 the possibility to determine their quantitative relationship with other particle properties, which would be benefit for further reduction of the uncertainty associated with the 302 303 effects of particles on air quality, human health and radiative forcing. 304 305 Data availability. Data in this study is available at https://github.com/longer1217/All-306 figures-data. 307 308 Author contributions. The idea for the study was conceived by LP and GHZ. All experiments were performed by LP with the assistance of LL. LP wrote the paper which 309 310 was reviewed by GHZ and XHB. All co-authors discussed the results and commented 311 on the manuscript. 312 313 **Competing interests.** The authors declare they have no conflict of interest. 314 315 Acknowledgment 316 This work was supported by the National Nature Science Foundation of China 317 (41775124 and 41877307), Natural Science Foundation of Guangdong Province (2019B151502022), and the Guangdong Foundation for the Program of Science and 318 Technology Research (2019B121205006 and 2017B030314057). The authors also 319 gratefully acknowledge Cambustion Ltd., UK for providing the AAC and Hexin 320

321 Analytical Instrument Co., Ltd., China for providing the SPAMS. 322 323 References Beranek, J., Imre, D., and Zelenyuk, A.: Real-time shape-based particle separation and 324 325 detailed in situ particle shape characterization, Anal. Chem., 84, 1459-1465, 326 https://doi.org/10.1021/ac202235z, 2012. 327 Buseck, P. R., and Posfai, M.: Airborne minerals and related aerosol particles: Effects 328 on climate and the environment, P. Natl. Acad. Sci. USA, 96, 3372-3379, https://doi.org/10.1073/pnas.96.7.3372, 1999. 329 Cross, E. S., Slowik, J. G., Davidovits, P., Allan, J. D., Worsnop, D. R., Jayne, J. T., 330 Lewis, D. K., Canagaratna, M., and Onasch, T. B.: Laboratory and ambient particle 331 332 density determinations using light scattering in conjunction with aerosol mass 333 spectrometry, Aerosol Sci. and Technol., 41, 343-359, https://doi.org/10.1080/02786820701199736, 2007. 334 335 DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle morphology and density characterization by combined mobility and aerodynamic 336 337 diameter measurements. Part 1: Theory, Aerosol Sci. and Technol., 38, 1185-1205, 338 https://doi.org/10.1080/027868290903907, 2004. 339 Guo, S., Hu, M., Zamora, M. L., Peng, J. F., Shang, D. J., Zheng, J., Du, Z. F., Wu, Z., Shao, M., Zeng, L. M., Molina, M. J., and Zhang, R. Y.: Elucidating severe urban 340 haze formation in China, P. Natl. Acad. Sci. USA, 111, 17373-17378, 2014. 341 342 Hoffman, R. C., Laskin, A., and Finlayson-Pitts, B. J.: Sodium nitrate particles: physical

343 and chemical properties during hydration and dehydration, and implications for aged sea salt aerosols, J. Aerosol Sci., 35, 869-887, 2004. 344 345 Katrib, Y., Martin, S. T., Rudich, Y., Davidovits, P., Jayne, J. T., and Worsnop, D. R.: Density changes of aerosol particles as a result of chemical reaction, Atmos. Chem. 346 347 Phys., 5, 275-291, https://doi.org/10.5194/acp-5-275-2005, 2005. Li, L., Huang, Z. X., Dong, J. G., Li, M., Gao, W., Nian, H. Q., Fu, Z., Zhang, G. H., 348 349 Bi, X. H., Cheng, P., and Zhou, Z.: Real time bipolar time-of-flight mass 350 spectrometer for analyzing single aerosol particles, Int. J. Mass Spectrom., 303, 118-124, https://doi.org/10.1016/j.ijms.2011.01.017, 2011. 351 Liu, Y., and Daum, P. H.: Relationship of refractive index to mass density and self-352 consistency of mixing rules for multicomponent mixtures like ambient aerosols, J. 353 354 Aerosol Sci., 39, 974-986, https://doi.org/10.1016/j.jaerosci.2008.06.006, 2008. Liu, Z., Hu, B., Ji, D., Wang, Y., Wang, M., and Wang, Y.: Diurnal and seasonal variation 355 of the PM2.5 apparent particle density in Beijing, China, Atmos. Environ., 120, 356 357 328-338, https://doi.org/10.1016/j.atmosenv.2015.09.005, 2015. Moffet, R. C., and Prather, K. A.: Extending ATOFMS measurements to include 358 359 refractive index density, Anal. Chemis., 77, 6535-6541, and 360 https://doi.org/10.1021/ac0503097, 2005. 361 Peng, J. F., Hu, M., Guo, S., Du, Z. F., Zheng, J., Shang, D. J., Zamora, M., Zeng, L. M., Shao, M., Wu, Y. S., Zheng, J., Wang, Y., Glen, C., Collins, D., Molina, M., 362 363 and Zhang, R. Y.: Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments, P. Natl. Acad. Sci. USA, 113, 364

365 4266-4271, 2016. Pitz, M., Cyrys, J., Karg, E., Wiedensohler, A., Wichmann, H. E., and Heinrich, J.: 366 Variability of apparent particle density of an urban aerosol, Environ. Sci. & 367 Technol., 37, 4336-4342, https://doi.org/10.1021/es034322p, 2003. 368 369 Poschl, U.: Atmospheric aerosols: Composition, transformation, climate and health 370 effects, Edit., 44, Angew. Chem. Int. 7520-7540, 371 https://doi.org/10.1002/anie.200501122, 2005. 372 Seinfeld, J. H., and Pandis, S. N.: From air pollution to climate change, 429-443, 1998. Sumlin, B. J., Oxford, C. R., Seo, B., Pattison, R. R., Williams, B. J., and Chakrabarty, 373 R. K.: Density and homogeneous internal composition of primary brown carbon 374 375 aerosol, Environ. 52, 3982-3989, Sci. & Technol., 376 https://doi.org/10.1021/acs.est.8b00093, 2018. Tang, I. N., and Munkelwitz, H. R.: Water Activities, Densities, and Refractive-Indexes 377 of Aqueous Sulfates and sodium-nitrate droplets of atmospheric importance, J. 378 379 Geophys. Res.-Atmos., 99, 18801-18808, 1994. Tang, I. N.: Thermodynamic and optical properties of mixed-salt aerosols of 380 381 atmospheric importance, J. Geophys. Res.-Atmos., 102, 1883-1893, 1997. 382 Tavakoli, F., and Olfert, J. S.: An instrument for the classification of aerosols by particle 383 relaxation time: Theoretical models of the aerodynamic aerosol classifier, Aerosol Sci. and Technol., 47, 916-926, https://doi.org/10.1080/02786826.2013.802761, 384 385 2013. Yin, Z., Ye, X. N., Jiang, S. Q., Tao, Y., Shi, Y., Yang, X., and Chen, J. M.: Size-resolved 386

387	effective density of urban aerosols in Shanghai, Atmos. Environ., 100, 133-140,				
388	https://doi.org/10.1016/j.atmosenv.2014.10.055, 2015.				
389	Yon, J., Bescond, A., and Ouf, F. X.: A simple semi-empirical model for effective				
390	density measurements of fractal aggregates, J. Aerosol Sci., 87, 28-37,				
391	https://doi.org/10.1016/j.jaerosci.2015.05.003, 2015.				
392	Zelenyuk, A., Cai, Y., Chieffo, L., and Imre, D.: High precision density measurements				
393	of single particles: The density of metastable phases, Aerosol Sci. and Technol.,				
394	39, 972-986, https://doi.org/10.1080/02786820500380206, 2005.				
395	Zelenyuk, A., Cai, Y., and Imre, D.: From agglomerates of spheres to irregularly shaped				
396	particles: Determination of dynamic shape factors from measurements of mobility				
397	and vacuum aerodynamic diameters, Aerosol Sci. and Technol., 40, 197-217,				
398	https://doi.org/10.1080/02786820500529406, 2006.				
399	Zhang, G., Bi, X., Han, B., Qiu, N., Dai, S., Wang, X., Sheng, G., and Fu, J.:				
400	Measurement of aerosol effective density by single particle mass spectrometry,				
401	Science China Earth Sciences, 59, 320-327, https://doi.org/10.1007/s11430-015-				
402	5146-y, 2016a.				
403	Zhao, G., Zhao, W., and Zhao, C.: Method to measure the size-resolved real part of				
404	aerosol refractive index using differential mobility analyzer in tandem with single-				
405	particle soot photometer, Atmos. Meas. Tech., 12, 3541-3550,				
406	https://doi.org/10.5194/amt-12-3541-2019, 2019.				

407 **Table 1.** D_{ve} for the eight particle types at D_a values of 250.0 nm, 350.0 nm, 450.0 nm, and 550.0 nm nm

D_a (nm)	K-rich	EC-S	K-Na	Amine
250.0	193.1 ± 8.2	192.2 ± 8.1	193.8 ± 21.9	190.6 ± 4.6
350.0	284.0 ± 28.4	280.8 ± 9.3	271.9 ± 18.0	284.8 ± 18.2
450.0	364.7 ± 21.1	357.8 ± 6.9	342.5 ± 7.3	367.9 ± 9.7
550.0	416.6 ± 28.3	439.5 ± 5.4	397.3 ± 29.7	442.5 ± 7.4
D_a (nm)	EC-N-S	OC-N-S	OC-EC-N-S	Metal-rich
250.0	188.5 ± 5.9	200.8 ± 17.9	195.4 ± 8.9	189.0 ± 6.7
350.0	281.3 ± 9.3	295.7 ± 29.8	294.0 ± 32.3	277.0 ± 9.1
450.0	358.0 ± 5.8	398.3 ± 44.3	428.9 ± 24.0	342.9 ± 10.0
550.0	453.2 ± 16.4	547.4 ± 14.7	570.9	407.4 ± 14.5

410

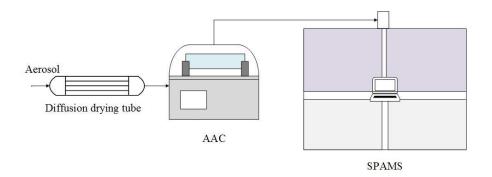
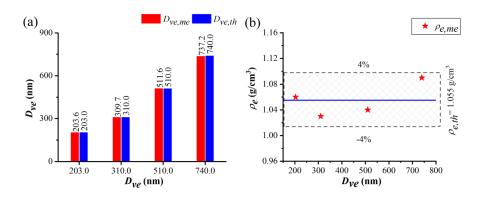
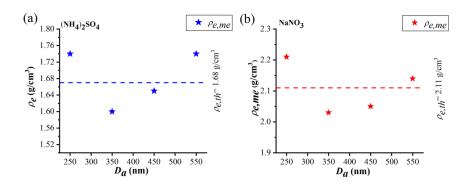



Figure 1. Schematic diagram of the AAC-SPAMS system.

415


Figure 2. (a) Comparison between the measured D_{ve} ($D_{ve,me}$) and the theoretical D_{ve} ($D_{ve,th}$) of the

416 PSL particles. (b) Comparison between the measured ρ_e ($\rho_{e,me}$) and the theoretical ρ_e ($\rho_{e,th}$) of the

417 PSL particles.

419

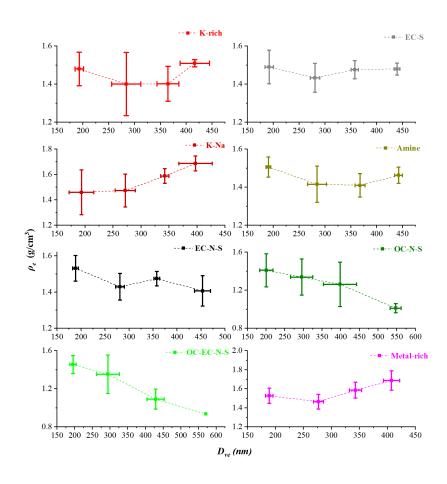

420

Figure 3. (a) Comparison between the measured ρ_e ($\rho_{e,me}$) and theoretical ρ_e ($\rho_{e,th}$) values of the $(NH_4)_2SO_4$ particles. (b) Comparison between the measured ρ_e ($\rho_{e,me}$) and theoretical ρ_e ($\rho_{e,th}$) values

421 of the NaNO₃ particles.

424

Figure 4. Variation in ρ_e of the eight particle types with D_{ve} .